Polyethylenimine-based iron oxide nanoparticles enhance cisplatin toxicity in ovarian cancer cells in the presence of a static magnetic field

Author:

Ashoori Faranak,Hajipour-Verdom Behnam,Satari Mohammad,Abdolmaleki Parviz

Abstract

BackgroundDrug resistance in cancer cells is a major concern in chemotherapy. Cisplatin (CIS) is one of the most effective chemotherapeutics for ovarian cancer. Here, we investigated an experimental approach to increase CIS cytotoxicity and overcome cell resistance using nanoparticle-based combination treatments.MethodsPolyethylenimine (PEI)-based magnetic iron oxide nanocomplexes were used for drug delivery in genetically matched CIS-resistant (A2780/CP) and -sensitive (A2780) ovarian cancer cells in the presence of a 20 mT static magnetic field. Magnetic nanoparticles (MNPs) were synthesized and bonded to PEI cationic polymers to form binary complexes (PM). The binding of CIS to the PM binary complexes resulted in the formation of ternary complexes PM/C (PEI–MNP/CIS) and PMC (PEI–MNP–CIS).ResultsCIS cytotoxicity increased at different concentrations of CIS and PEI in all binary and ternary delivery systems over time. Additionally, CIS induced cell cycle arrest in the S and G2/M phases and reactive oxygen species production in both cell lines. Ternary complexes were more effective than binary complexes at promoting apoptosis in the treated cells.ConclusionPEI-based magnetic nanocomplexes can be considered novel carriers for increasing CIS cytotoxicity and likely overcoming drug resistance of ovarian cancer cells.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3