A deep learning model for drug screening and evaluation in bladder cancer organoids

Author:

Zhang Shudi,Li Lu,Yu Pengfei,Wu Chunyue,Wang Xiaowen,Liu Meng,Deng Shuangsheng,Guo Chunming,Tan Ruirong

Abstract

Three-dimensional cell tissue culture, which produces biological structures termed organoids, has rapidly promoted the progress of biological research, including basic research, drug discovery, and regenerative medicine. However, due to the lack of algorithms and software, analysis of organoid growth is labor intensive and time-consuming. Currently it requires individual measurements using software such as ImageJ, leading to low screening efficiency when used for a high throughput screen. To solve this problem, we developed a bladder cancer organoid culture system, generated microscopic images, and developed a novel automatic image segmentation model, AU2Net (Attention and Cross U2Net). Using a dataset of two hundred images from growing organoids (day1 to day 7) and organoids with or without drug treatment, our model applies deep learning technology for image segmentation. To further improve the accuracy of model prediction, a variety of methods are integrated to improve the model’s specificity, including adding Grouping Cross Merge (GCM) modules at the model’s jump joints to strengthen the model’s feature information. After feature information acquisition, a residual attentional gate (RAG) is added to suppress unnecessary feature propagation and improve the precision of organoids segmentation by establishing rich context-dependent models for local features. Experimental results show that each optimization scheme can significantly improve model performance. The sensitivity, specificity, and F1-Score of the ACU2Net model reached 94.81%, 88.50%, and 91.54% respectively, which exceed those of U-Net, Attention U-Net, and other available network models. Together, this novel ACU2Net model can provide more accurate segmentation results from organoid images and can improve the efficiency of drug screening evaluation using organoids.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects in Yunnan Province

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3