Quantifying urban climate response to large-scale forcing modified by local boundary layer effects

Author:

Hamze-Ziabari Seyed Mahmood,Jafari Mahdi,Huwald Hendrik,Lehning Michael

Abstract

Over the past two decades, the joint manifestation of global warming and rapid urbanization has significantly increased the occurrence of heatwaves and the formation of urban heat islands in temperate cities. Consequently, this synergy has amplified the frequency and duration of periods with tropical nights (TNs) in these urban areas. While the occurrences of such extreme events demonstrate irregular and nonlinear annual patterns, they consistently manifest a discernible rising decadal trend in local or regional climatic data. In urban regions situated amidst hilly or mountainous landscapes, changing wind directions—often associated with uphill or downhill thermal flows—profoundly impact the spread and dispersion of heat-related pollution, creating unique natural ventilation patterns. Using the Lausanne/Pully urban area in Switzerland as examples of hilly and lakeshore temperate cities, this study explores the influence of wind patterns and natural urban ventilation on the nonlinearity of recorded climatic data within an urban environment. This study integrates a mesoscale numerical weather prediction model (COSMO-1), a microscale Computational Fluid Dynamics (CFD) model, field observations, variational mode decomposition technique, and statistical analysis to investigate how wind speed and direction critically influence the nonlinearity of recorded long-term trends of extreme events, specifically focusing on the frequency and duration of TNs in lakeshore and hilly cities. The results strongly indicate a direct correlation between the frequency of TNs and the occurrence of specific moderate wind patterns. These wind patterns are exclusively captured by the microscale CFD model, unlike the mesoscale model, which neglects both urban morphology and complex hilly terrains. The impact of temporal and spatial variability of the wind field on long-term observations at fixed measurement stations suggests that caution should be exercised when relying on limited spatial measurement points to monitor and quantify long-term urban climate trends, particularly in cities located in complex terrains.

Publisher

Frontiers Media SA

Reference94 articles.

1. Data-driven analysis of Urban Heat Island phenomenon based on street typology;Acosta;Sustain. Cities Soc.,2024

2. Three decades of urban heat islands and mitigation technologies research;Akbari;Energy Build.,2016

3. Global observed changes in daily climate extremes of temperature and precipitation;Alexander;J. Geophys. Res. Atmos.,2006

4. Hybrid multiscale wind speed forecasting based on variational mode decomposition;Ali;Int. Trans. Electr. Energy Syst.,2018

5. Characteristics of the urban heat island in the city of Salamanca, Spain;Alonso;Atmósfera,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3