The benefits of big-team science for conservation: Lessons learned from trinational monarch butterfly collaborations

Author:

Diffendorfer Jay E.,Drum Ryan G.,Mitchell Greg W.,Rendón-Salinas Eduardo,Sánchez-Cordero Victor,Semmens Darius J.,Thogmartin Wayne E.,March Ignacio J.

Abstract

Many pressing conservation issues are complex problems caused by multiple social and environmental drivers; their resolution is aided by interdisciplinary teams of scientists, decision makers, and stakeholders working together. In these situations, how do we generate science to effectively guide conservation (resource management and policy) decisions? This paper describes elements of successful big-team science in conservation, as well as shortcomings and lessons learned, based on our work with the monarch butterfly (Danaus plexippus) in North America. We summarize literature on effective science teams, extracting information about elements of success, effective implementation approaches, and barriers or pitfalls. We then describe recent and ongoing conservation science for the monarch butterfly in North America. We focus primarily on the activities of the Monarch Conservation Science Partnership–an international collaboration of interdisciplinary scientists, policy experts and natural resource managers spanning government, non-governmental and academic institutions—which developed science to inform imperilment status, recovery options, and monitoring strategies. We couch these science efforts in the adaptative management framework of Strategic Habitat Conservation, the business model for conservation employed by the US Fish and Wildlife Service to inform decision-making needs identified by stakeholders from Canada, the United States, and Mexico. We conclude with elements critical to effective big-team conservation science, discuss why science teams focused on applied conservation problems are unique relative to science teams focusing on traditional or theoretical research, and list benefits of big team science in conservation.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference78 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3