Solar Drying as an Eco-Friendly Technology for Sewage Sludge Stabilization: Assessment of Micropollutant Behavior, Pathogen Removal, and Agronomic Value

Author:

An-nori Amal,Ezzariai Amine,El Mejahed Khalil,El Fels Loubna,El Gharous Mohamed,Hafidi Mohamed

Abstract

Sewage sludge (SS) is a biosolid that includes nutrients, organic matter, and a mixture of micropollutants and pathogens. Regarding its final disposal, several criteria should be met to avoid the dissemination of the included micropollutants in the environment. Hence, an adequate treatment prior to SS disposal is highly required. Solar drying is being acknowledged as a sustainable process of SS treatment, yet it is still unclear to what extent this technique is efficient. This review aimed to assess the impact of solar drying on the composition of SS from environmental and agronomic standpoints. Herein, we present the state-of-the-art with regard to solar drying efficiency in terms of water content reduction, DM increase, agronomic parameters evolvement, and micropollutant stabilization including pathogens, heavy metals (HMs), and organic micropollutants. The reviewed literature is mostly focused on two drying cycles: summer and winter, thus addressing the extreme conditions met within a year with respect to temperature. Under different climatic conditions, more than 80% of dry matter is reached during summer. In winter, the efficiency decreases to an average of 50% of DM. Negatively correlated to DM content, pathogen concentration in SS significantly decreased, while DM increased. Thus, more efficiency in terms of pathogen abatement is reported in summer than in winter (e.g., 96% against 60% during summer and winter, respectively, under semi-arid climate). The high reliance of solar drying efficiency on weather has been deduced in terms of DM content increase and pathogen removal. Where climatic conditions are not favorable for solar drying, hybrid design and liming are the highly recommended methods to remove pathogens from SS. A few studies on the fate of HMs in SS during solar drying concluded that solar drying does not involve any removal mechanisms. Changes in HM speciation in solar-dried sludge were reported highlighting a decrease in their mobility. As for organic micropollutants (PAHs and antibiotics), only their occurrence in SS is reported in the literature, and their behavior during the solar drying process is still not addressed. This review allowed concluding the following: 1) solar drying is a sustainable, relevant process for SS handing in terms of volume reduction and pathogen removal, particularly in semi-arid regions; 2) solar drying does not lower the SS agronomic value and does not remove HMs, but under semi-arid climate, it changes HM speciation and reduces their mobility. The gap in research regarding organic micropollutant and heavy metal behavior during SS solar drying has been emphasized as a way forward for research within this topic. Hence, more research is required to help stakeholders decide on the feasibility of an agricultural disposal of solar-dried sludge.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3