Development of a Multilayer Deep Neural Network Model for Predicting Hourly River Water Temperature From Meteorological Data

Author:

Abdi Reza,Rust Ashley,Hogue Terri S.

Abstract

Water temperature is a vital attribute of physical riverine habitat and one of the focal objectives of river engineering and management. However, in most rivers, there are not enough water temperature measurements to characterize thermal regimes and evaluate its effect on ecosystem functions such as fish migration. To aid in river restoration, machine learning-based algorithms were developed to predict hourly river water temperature. We trained, validated, and tested single-layer and multilayer linear regression (LR) and deep neural network (DNN) algorithms to predict water temperature in the Los Angeles River in southern CA, United States. For the single-layer models, we considered air temperature as the predictive feature, and for the multilayer models, relative humidity, wind speed, and barometric pressure were included in addition to air temperature as the considered features. We trained the LR and DNN algorithms on Google’s TensorFlow model using Keras artificial neural network library on Python. Results showed that multilayer predictions performed better compared to single-layer models by producing mean absolute errors (MAEs), that were 20% smaller (1.05°C), on average, compared to the single-layer models (1.3°C). The multilayer DNN algorithm outperformed the other model where the model’s coefficient of determination was 26 and 12% higher compared to the single-layer LR (the base model) and multilayer LR model, respectively. The multilayer machine learning algorithms, under proper data preparation protocols, may be considered useful tools for predicting water temperatures in sampled and unsampled rivers for current conditions and future estimations affected by different stressors such as climate and land-use change. River temperature predictions from the developed models provide valuable information for evaluating sustainability of river ecosystems and biota.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3