Data-driven novel deep learning applications for the prediction of rainfall using meteorological data

Author:

Li Hongli,Li Shanzhi,Ghorbani Hamzeh

Abstract

Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m2). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R2), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3