Quantitative source apportionment of heavy metals in atmospheric deposition of a typical heavily polluted city in Northern China: Comparison of PMF and UNMIX

Author:

Cai Angzu,Zhang Haixia,Zhao Yawei,Wang Xiaojian,Wang Litao,Zhao Hui

Abstract

Receptor models are rarely utilized in atmospheric deposition but are often used to identify pollutant sources and quantify their contributions. This article focuses on the soil in atmospheric deposition in a typical polluted city. Atmospheric deposition has become an important route for exogenous heavy metals’ input into ecosystems. In this study, the heavy metals in atmospheric deposition were determined in three monitoring points arranged in Handan City. According to the functional area, fluxes, sources, and accumulation in the soil were explored. The sources of heavy metals were identified by PMF (positive matrix factorization) and UNMIX. The accumulation of heavy metals in the soil was predicted. The results showed that the deposition fluxes in industrial areas were higher than other functional areas. The mean concentrations of 8 heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn, and As) in the atmospheric deposition exceed their background values. PMF identified five major sources and UNMIX analyzed four sources. Similar source apportionment results were acquired via PMF and UNMIX, which were the combustion of fossil fuels, steel-smelting emission, road dust, and industrial sources. Steel-smelter emission was the highest source contributor. Therefore, combining these two models was the most effective approach, and more attention should be paid to mitigating the pollution caused by the industrial activities. The prediction indicated that the accumulation of heavy metals from atmospheric deposition to the soil would increase in 30 years, the growth rate of Cd increased significantly. The results of this study could provide reference in reduction of heavy metal pollution in atmospheric deposition.

Funder

Hebei Provincial Department of Bureau of Science and Technology

Department of Education of Hebei Province

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3