Efficient eradication of organotin utilizing K2FeO4 augmented by nZVI: revelations on influential factors, kinetic dynamics, and mechanistic insights

Author:

Huang Yuanyuan,Yang Qingwei,Song Ling,Ran Hongjie,Jiang Hui,Sun Da

Abstract

In this study, we investigated the oxidative mechanisms of nano zero-valent iron (nZVI) enhanced potassium ferrate (K2FeO4), focusing on tributyltin (TBT) and triphenyltin (TPhT) as target pollutants. The addition of nZVI enhanced the degradation of both organic tin compounds by K2FeO4, exhibiting pseudo-first-order kinetics influenced by pH, carbonate, and fulvic acid. nZVI, as a reducing agent, facilitated the generation of stronger oxidizing species Fe (V) and Fe (IV) from K2FeO4 through electron transfer. The presence of hydroxyl radicals (OH) was confirmed by tert-butyl alcohol (TBA) verification. Intermediate products of TBT degradation by nZVI-enhanced K2FeO4 were identified using GC-MS, confirming de-alkylation leading to stepwise oxidation to inorganic tin ions. Due to excessively long Sn-C bonds in diphenyltin, rendering them unstable, Density Functional Theory (DFT) calculations were employed. Results indicated that Fe (IV) and Fe (V) predominantly attacked the Sn-C bonds of TPhT, while OH primarily targeted the benzene ring. HOMO energy levels suggested that Fe (V) was more prone to oxidizing TPhT than Fe (IV). Gibbs free energy calculations demonstrated that, in the presence of Fe (IV) and Fe (V), the energy barrier for breaking bonds and oxidizing into inorganic tin ions decreased, favoring the process over the self-decomposition of TPhT. Additionally, the lower energy barrier for OH indicated an easier degradation of TPhT. This study reveals that nZVI-enhanced K2FeO4 effectively removes TBT and TPhT, contributing to the understanding of the ferrate-mediated degradation mechanism of organic tin compounds. The findings offer insights and theoretical guidance for remediating organic tin pollution in aquatic environments.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3