Prevalence of Vancomycin Resistant Enterococcus in Wastewater Treatment Plants and Their Recipients for Reuse Using PCR and MALDI-ToF MS

Author:

Adegoke Anthony A.,Madu Chibuzor E.,Reddy Poovendhree,Stenström Thor A.,Okoh Anthony I.

Abstract

The World Health Organization in 2017 listed vancomycin-resistant enterococci (VRE) among those with high priority for research. This study determined the efficiency of two wastewater treatment plants (WWTPs) in removing both vancomycin-resistant enterococci (VRE) and vancomycin-sensitive enterococci (VSE) from wastewater and the effect of their effluents on the receiving water bodies being reused. VRE and total enterococci (TE) respectively were isolated using Slanetz and Bartley agar with and without vancomycin from wastewater and river samples. Isolate speciation was confirmed by PCR and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) mass spectrometry (MS). Molecular methods were used for confirmation of presumptive VRE and for detection of van genes. Resistance to antibiotics was determined by the disk diffusion method. The TE and VRE counts of the two WWTPs influents ranged from 6.1 to 7.2 log10 CFU/100 ml and 4.3 to 6.7 log10 CFU/100 ml respectively while the effluent counts ranged from 0 to 4.4 log10 CFU/100 ml and 0 to 3.4 log10 CFU/100 ml for the chlorinated effluents. The TE and VRE counts of the recipient river samples were higher than the effluents. Exactly 186 (80.1%) isolates tallied with PCR as Enterococcus while 22 (9.5%) were positive by PCR but negative with MALDI-TOF. Enterococcus faecium and E. faecalis were the most abundant species. The isolates showed 34–100% resistance to quinopristin-dalfopristin, streptomycin, doxycycline, tetracycline, ciprofloxacin and cefixime. VanA (73.8%) were dominant among the isolates. The two WWTPs were efficient in reducing the VRE counts. Thus, the VRE in the river is most likely due to contamination from other sources and it may result in threat to human health when reused.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3