For the aged: A novel PM2.5 concentration forecasting method based on spatial-temporal graph ordinary differential equation networks in home-based care parks

Author:

Zeng Qingtian,Wang Chao,Chen Geng,Duan Hua,Wang Shuihua

Abstract

The immune ability of the elderly is not strong, and the functions of the body are in a stage of degeneration, the ability to clear PM2.5 is reduced, and the cardiopulmonary system is easily affected. Accurate prediction of PM2.5 can provide guidance for the travel of the elderly, thereby reducing the harm of PM2.5 to the elderly. In PM2.5 prediction, existing works usually used shallow graph neural network (GNN) and temporal extraction module to model spatial and temporal dependencies, respectively, and do not uniformly model temporal and spatial dependencies. In addition, shallow GNN cannot capture long-range spatial correlations. External characteristics such as air humidity are also not considered. We propose a spatial-temporal graph ordinary differential equation network (STGODE-M) to tackle these problems. We capture spatial-temporal dynamics through tensor-based ordinary differential equation, so we can build deeper networks and exploit spatial-temporal features simultaneously. In addition, in the construction of the adjacency matrix, we not only used the Euclidean distance between the stations, but also used the wind direction data. Besides, we propose an external feature fusion strategy that uses air humidity as an auxiliary feature for feature fusion, since air humidity is also an important factor affecting PM2.5 concentration. Finally, our model is evaluated on the home-based care parks atmospheric dataset, and the experimental results show that our STGODE-M can more fully capture the spatial-temporal characteristics of PM2.5, achieving superior performance compared to the baseline. Therefore, it can provide better guarantee for the healthy travel of the elderly.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3