Spatial and temporal characteristics of drought in the Mu Us Sandy Land based on the Standardized Precipitation Index

Author:

Zhu Yonghua,Li Jiamin,Xi Xiaokang,Zhang Jie,Ma Pengfei,Liang Li’e,Luo Pingping

Abstract

The environment of the Mu Us Sandy Land, northern Shaanxi, is fragile, so the temporal and spatial evolution of drought can provide a reference for ecological construction and agricultural production. Based on the daily precipitation data of five meteorological stations from 1967 to 2020, the spatial and temporal evolution characteristics of drought in the Mu Us Sandy Land of northern Shaanxi were analyzed using the methods Standardized Precipitation Index (SPI) and run-length theory. The results show that 1) the smaller the time scale, the higher the sensitivity of the SPI to primary precipitation. 2) The annual, summer, autumn, and winter SPI showed an upward and a wetting trend, and the fastest wetting speed is observed in summer, while spring showed an increasing trend of drought. 3) In the past 54 years, the duration, degree, and intensity of drought events at SPI-3 and SPI-12 scales in the Mu Us Sandy Land of northern Shaanxi showed an insignificant decreasing trend, but the decreasing rate at the SPI-12 scale was faster than that at the SPI-3 scale. The serious periods of drought are November 2018 to May 2019 and April 1999 to July 2021. 4) The duration of drought events at two timescales in each region showed a decreasing trend. The longest durations of drought were in Yulin and Jingbian; Shenmu and Dingbian are the regions with the fastest reduction rate of drought degree at the two scales. Hengshan shows rapid reduction of drought intensity at the two scales and also the region with large average drought intensity. These results are helpful in understanding and describing drought events for drought risk management under the condition of global warming.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3