Effects of occasional tillage on soil physical and chemical properties and weed infestation in a 10-year no-till system

Author:

Diop Massamba,Beniaich Adnane,Cicek Harun,Ouabbou Hassan,El Gharras Oussama,Tanji Abbès,Bamouh Ahmed,Dahan Rachid,Zine El Abidine Aziz,El Gharous Mohamed,El Mejahed Khalil

Abstract

Few studies have investigated how one-time targeted tillage of long-term no-till fields impacts topsoil properties and weed dynamics. An on-farm trial was implemented in 2020 to test the effects of occasional tillage (OT) in Morocco with a long-term no-tillage (NT) system and rainfed field crops: durum wheat (Triticum durum), faba bean (Vicia faba minor), and chickpea (Cicer arietinum). Four treatments were established, namely, continuous NT with crop residues maintained (“NT + residue”); continuous NT with crop residues not maintained (“NT-residue”); shallow inversion tillage (“shallow OT”); and deep non-inversion tillage (“deep OT”). We assessed the effect of these treatments on soil physical and chemical properties in 0–10 and 10–20 cm soil depths after crop harvest of the 2020–2021 (year 1) and 2021–2022 (year 2) growing seasons corresponding to 1 and 2 years after OT, respectively. In addition, we evaluated the effect of the treatments on weed populations and the effect of the legume crop rotated with wheat on soil nitrogen (N) and weed density. In year 1, deep OT reduced the water content at field capacity and available water capacity at 0–10 cm compared to continuous NT; the cation-exchange capacity (CEC) under deep OT was lower than in NT-residue and NT + residue at 0–10 cm and 10–20 cm, respectively. Furthermore, deep OT increased ammonium-N (NH4-N) at 0–10 and 10–20 cm compared to NT + residue but reduced exchangeable potassium (K) at 10–20 cm depth compared to NT-residue. In year 2, shallow OT had lower total porosity at 10–20 cm than NT + residue, while shallow and deep OT recorded higher water-stable aggregates at 0–10 cm than NT + residue; at 10–20 cm, deep OT recorded lower CEC than NT + residue. However, deep OT had higher nitrate-N (NO3-N) and available sulfur (S) than NT-residue at 10–20 cm. Occasional tillage did not significantly affect 10 out of 19 of the soil properties evaluated, including soil organic matter (SOM), in all the years and did not help reduce the stratification of soil nutrients in NT. In year 1, 50 days after OT, deep OT reduced the weed density by 46% compared to NT + residue, while in year 2, 406 days after OT, shallow OT reduced weed density by 53% compared to NT-residue. Regarding the effect of the legume rotated with wheat, faba bean appeared to be the better preceding or following wheat crop as it resulted in higher residual soil mineral N and lower weed infestation than chickpea.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3