A new approach to determine the reverse logistics-related issues of smart buildings focusing on sustainable architecture

Author:

Kadaei Samireh,Nezam Zohreh,González-Lezcano Roberto Alonso,Shokrpour Saman,Mohammadtaheri Amin,Doraj Parisa,Akar Umit

Abstract

Introduction: As the disposal of materials and commodities in the management of construction projects has evolved into a critical issue, certain building materials are likely to be thrown away as rubbish at the end of a structure’s useful life. However, tearing down houses and dumping huge amounts of garbage in landfills are not the best feasible solutions to the problem. The depletion and loss of building materials on the project site are exacerbated by the significant amount of waste generated during construction. The tearing down and rebuilding of previously existing buildings are two other methods contributing to rubbish production. Trash management that is as effective as possible has become a need in light of the depletion of natural resources and raw materials, as well as the rise in the pollution brought on by waste from construction projects. One technique that might be taken to address these challenges is the implementation of concepts related to reverse logistics (RL). By considering energy management in construction utilizing sustainability and environmental criteria, this study aims to identify the inverse logistics issues of construction management and smart building. Methods: An integrated method of multi-criteria decision-making called MARCOS and ordinal priority approach (OPA) for ranking solutions and weighing criteria is presented in this study. Results: The findings indicate that out of the 23 challenges that must be overcome to implement reverse logistics effectively and achieve sustainability in the construction industry, the one with the most weight and impact on sustainability is “Workforce errors and mistakes during execution.” Discussion: out of the ten potential solutions, “determining reverse logistics as a part of a sustainability program” and “strategic collaboration with reverse logistics partners” offer the most viable options for resolving the issue and overcoming the obstacles.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3