ENSO Teleconnection to Interannual Variability in Carbon Monoxide Over the North Atlantic European Region in Spring

Author:

Liu Yi,Liu Jane,Xie Min,Fang Keyan,Tarasick David W.,Wang Honglei,Meng Lingyun,Cheng Xugeng,Han Han,Zhang Xun

Abstract

Carbon monoxide (CO) is an important trace gas in the troposphere, while the El Niño-Southern Oscillation (ENSO) phenomenon is the most important tropical climate variability. ENSO is known to influence interannual variation in meteorological variables on the global scale but its influence on atmospheric CO over large areas in a long term is uncertain. Here we report a strong positive teleconnection between the El Niño–Southern Oscillation (ENSO) in winter (November to February) to tropospheric CO over the North Atlantic European region (NAE) in the following spring (March to May). This ENSO teleconnection is evident in trajectory-mapped airborne CO data (In-service Aircraft for a Global Observing System, IAGOS) over 2002–2019. CO concentrations in El Niño years are 5–20 ppbv higher than those in La Niña years over the NAE troposphere. The regional mean difference from the surface to 300 hPa is 9.4 ppbv (7.6% of the mean). The correlation coefficient (r) between the ENSO index and detrended CO concentrations in the NAE is 0.67 at 400 hPa and 0.63 near the surface, both statistically significant at the 95% level. Such a teleconnection is also observed in independent surface observations, with r ranging from 0.57 to 0.74, all at 95% significance level. From analysis of fire emissions and atmospheric conditions, combined with tagged CO simulations using a chemical transport model, GEOS-Chem, we conclude that this teleconnection results from the combined effects of ENSO on both biomass burning and atmospheric transport. We find that in El Niño years, CO emissions from biomass burning are significantly enhanced in Northern Hemispheric South America, Southeast Asia, and North America due to warmer air temperatures and lowered precipitation. In addition, ENSO enhances CO transport from these regions to the NAE by enhancing upward and northeastward motions in the fire regions, accelerating westerlies over 20°N–40°N, and prompting ascents over the Atlantic and descents over Europe, while reducing CO outflow at the eastern boundary of Europe. The combined effect of ENSO on both CO emissions and CO transport leads to interannual variability in tropospheric CO over the NAE.

Funder

Ministry of Science and Technology of the People’s Republic of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3