Spring Freeze–Thaw Stimulates Greenhouse Gas Emissions From Agricultural Soil

Author:

Badewa Emmanuel A.,Yeung Chun C.,Rezanezhad Fereidoun,Whalen Joann K.,Oelbermann Maren

Abstract

In temperate cold regions, the gradual resurgence of soil microbial activity during spring freeze-thaw events is frequently associated with greenhouse gas emissions. Enhanced greenhouse gas fluxes during spring freeze-thaw are related to the mineralization of bioavailable substrates, which may be elevated when soil is amended with organic residues (e.g., biobased residues such as compost, digestate, biosolids). The objective of this study was to determine the impact of biobased residues, compared to urea fertilizer, on greenhouse gas emissions during spring freeze-thaw events. The field treatments included urea (170 kg N ha−1 y−1), composted food waste (240 kg N ha−1 y−1), hydrolyzed biosolids (215 kg N ha−1 y−1), and anaerobic digestate (231 kg N ha−1 y−1). Headspace gases were sampled from a closed static chamber in each replicate plot (n = 4) and categorized with three transient spring freeze-thaw phases (waterlogged, wet, and dry). Among the treatments, nitrous oxide (N2O) flux was significantly different (p < 0.05) where compost had the highest emission and digestate lowest while carbon dioxide (CO2) and methane (CH4) fluxes were not significantly different (p > 0.05). The greenhouse gas fluxes were significantly different among the freeze-thaw events (p < 0.05) likely due to intense microbial activity and anaerobic conditions. The CO2 and CH4 emissions were related to N2O emission (p < 0.05), and soil temperature strongly correlated with CO2 fluxes. This suggested that soil warming driven by ambient conditions as well as the type and quantity of carbon input influenced soil microbial activity, leading to greenhouse gases production. Therefore, soil amended with biobased residues may either increase or reduce greenhouse gas fluxes during spring freeze-thaw events depending on the source and production method of the organic material.

Funder

University of Waterloo

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3