Relevance of plant growth-promoting bacteria in reducing the severity of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici by altering metabolites and related genes

Author:

Ansari Waquar Akhter,Krishna Ram,Kashyap Sarvesh Pratap,Al-Anazi Khalid Mashay,Abul Farah Mohammad,Jaiswal Durgesh Kumar,Yadav Akhilesh,Zeyad Mohammad Tarique,Verma Jay Prakash

Abstract

Among the biotic stresses, wilt disease severely affects tomato quality and productivity globally. The causal organism of this disease is Fusarium oxysporum f. sp. lycopersici (Fol), which is very well known and has a significant impact on the productivity of other crops as well. Efforts have been made to investigate the effect of plant growth-promoting bacteria (PGPB) on alleviating tomato wilt disease. Four PGPB strains, such as Pseudomonas aeruginosa BHUPSB01 (T1), Pseudomonas putida BHUPSB04 (T2), Paenibacillus polymyxa BHUPSB16 (T3), and Bacillus cereus IESDJP-V4 (T4), were used as inocula to treat Fol-challenged plants. The results revealed that PGPB treatments T1, T2, T3, and T4 were able to decrease the severity of Fusarium wilt in the tomato plants at different levels. Among the treatments, T3 displayed the strongest protective effect, with the lowest disease frequency, which was 15.25%. There were no significant differences observed in parameters such as fruit yield and relative water content in the PGPB-inoculated plants, although T3 and T4 showed minimal electrolyte leakage. Significant changes in chlorophyll fluorescence were also recorded. A lower level of H2O2 and malondialdehyde (MDA) was observed in the T3 and T4 treatments. In addition, proline accumulation was highest in the T3-treated plants. Antioxidative enzyme activities, such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), significantly increased in the PGPB-treated plants. Furthermore, the highest phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) activity was reported in the T3 and T4 plants, respectively. The PGPB-treated plants showed elevated expression of the PAL, PPO, PR3, PR2, SOD, CAT, and PO genes. This study’s results reveal that PGPB strains can be utilized as biocontrol agents (BCAs) to enhance tomato resistance against Fusarium wilt.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3