Advances in machine learning-based bacteria analysis for forensic identification: identity, ethnicity, and site of occurrence

Author:

Xu Geyao,Teng Xianzhuo,Gao Xing-Hua,Zhang Li,Yan Hongwei,Qi Rui-Qun

Abstract

When faced with an unidentified body, identifying the victim can be challenging, particularly if physical characteristics are obscured or masked. In recent years, microbiological analysis in forensic science has emerged as a cutting-edge technology. It not only exhibits individual specificity, distinguishing different human biotraces from various sites of occurrence (e.g., gastrointestinal, oral, skin, respiratory, and genitourinary tracts), each hosting distinct bacterial species, but also offers insights into the accident’s location and the surrounding environment. The integration of machine learning with microbiomics provides a substantial improvement in classifying bacterial species compares to traditional sequencing techniques. This review discusses the use of machine learning algorithms such as RF, SVM, ANN, DNN, regression, and BN for the detection and identification of various bacteria, including Bacillus anthracis, Acetobacter aceti, Staphylococcus aureus, and Streptococcus, among others. Deep leaning techniques, such as Convolutional Neural Networks (CNN) models and derivatives, are also employed to predict the victim’s age, gender, lifestyle, and racial characteristics. It is anticipated that big data analytics and artificial intelligence will play a pivotal role in advancing forensic microbiology in the future.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3