Rumen and fecal microbiomes are related to diet and production traits in Bos indicus beef cattle

Author:

Conteville Liliane Costa,da Silva Juliana Virginio,Andrade Bruno Gabriel Nascimento,Cardoso Tainã Figueiredo,Bruscadin Jennifer Jessica,de Oliveira Priscila Silva Neubern,Mourão Gerson Barreto,Coutinho Luiz Lehmann,Palhares Julio Cesar Pascale,Berndt Alexandre,de Medeiros Sergio Raposo,Regitano Luciana Correia de Almeida

Abstract

BackgroundRuminants harbor a complex microbial community within their gastrointestinal tract, which plays major roles in their health and physiology. Brazil is one of the largest producers of beef in the world and more than 90% of the beef cattle herds are composed of pure and crossbred Nelore (Bos indicus). Despite its importance to the Brazilian economy and human feeding, few studies have characterized the Nelore microbiome. Therefore, using shotgun metagenomics, we investigated the impact of diet on the composition and functionality of the Nelore microbiome, and explored the associations between specific microbial taxa and their functionality with feed efficiency and methane emission.ResultsThe ruminal microbiome exhibited significantly higher microbial diversity, distinctive taxonomic profile and variations in microbial functionality compared to the fecal microbiome, highlighting the distinct contributions of the microbiomes of these environments. Animals subjected to different dietary treatments exhibited significant differences in their microbiomes’ archaeal diversity and in the abundance of 89 genera, as well as in the functions associated with the metabolism of components of each diet. Moreover, depending on the diet, feed-efficient animals and low methane emitters displayed higher microbial diversity in their fecal microbiome. Multiple genera were associated with an increase or decrease of the phenotypes. Upon analyzing the functions attributed to these taxa, we observed significant differences on the ruminal taxa associated with feed efficient and inefficient cattle. The ruminal taxa that characterized feed efficient cattle stood out for having significantly more functions related to carbohydrate metabolism, such as monosaccharides, di−/oligosaccharides and amino acids. The taxa associated with methane emission had functions associated with methanogenesis and the production of substrates that may influence methane production, such as hydrogen and formate.ConclusionOur findings highlight the significant role of diet in shaping Nelore microbiomes and how its composition and functionality may affect production traits such as feed efficiency and methane emission. These insights provide valuable support for the implementation of novel feeding and biotechnological strategies.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3