Genetic characteristics and integration specificity of Salmonella enterica temperate phages

Author:

Sun Siqi,Zhang Xianglilan

Abstract

IntroductionTemperate phages can engage in the horizontal transfer of functional genes to their bacterial hosts. Thus, their genetic material becomes an intimate part of bacterial genomes and plays essential roles in bacterial mutation and evolution. Specifically, temperate phages can naturally transmit genes by integrating their genomes into the bacterial host genomes via integrases. Our previous study showed that Salmonella enterica contains the largest number of temperate phages among all publicly available bacterial species. S. enterica is an important pathogen that can cause serious systemic infections and even fatalities.MethodsInitially, we extracted all S. enterica temperate phages from the extensively developed temperate phage database established in our previous study. Subsequently, we conducted an in-depth analysis of the genetic characteristics and integration specificity exhibited by these S. enterica temperate phages.ResultsHere we identified 8,777 S. enterica temperate phages, all of which have integrases in their genomes. We found 491 non-redundant S. enterica temperate phage integrases (integrase entries). S. enterica temperate phage integrases were classified into three types: intA, intS, and phiRv2. Correlation analysis showed that the sequence lengths of S. enterica integrase and core regions of attB and attP were strongly correlated. Further phylogenetic analysis and taxonomic classification indicated that both the S. enterica temperate phage genomes and the integrase gene sequences were of high diversities.DiscussionOur work provides insight into the essential integration specificity and genetic diversity of S. enterica temperate phages. This study paves the way for a better understanding of the interactions between phages and S. enterica. By analyzing a large number of S. enterica temperate phages and their integrases, we provide valuable insights into the genetic diversity and prevalence of these elements. This knowledge has important implications for developing targeted therapeutic interventions, such as phage therapy, to combat S. enterica infections. By harnessing the lytic capabilities of temperate phages, they can be engineered or utilized in phage cocktails to specifically target and eradicate S. enterica strains, offering an alternative or complementary approach to traditional antibiotic treatments. Our study has implications for public health and holds potential significance in combating clinical infections caused by S. enterica.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3