Low Rate of Acquired Linezolid Resistance in Multidrug-Resistant Tuberculosis Treated With Bedaquiline-Linezolid Combination

Author:

Du Jian,Gao Jingtao,Yu Yanhong,Li Qingfeng,Bai Guanghong,Shu Wei,Gao Mengqiu,Liu Yuhong,Wang Lu,Wang Yufeng,Xue Zhongtan,Huo Fengmin,Li Liang,Pang Yu

Abstract

In this retrospective study in China, we aimed to: (1) determine the prevalence of linezolid (LZD) resistance among multidrug-resistant tuberculosis (MDR-TB)-infected patients; (2) monitor for dynamic LZD susceptibility changes during anti-TB treatment; and (3) explore molecular mechanisms conferring LZD resistance. A total of 277 MDR-TB patients receiving bedaquiline (BDQ)-containing regimens in 13 TB specialized hospitals across China were enrolled in the study. LZD and BDQ susceptibility rates were determined using the minimum inhibitory concentration (MIC) method, then DNA sequences of patient isolates were analyzed using Sanger sequencing to detect mutations conferring LZD resistance. Of 277 patients in our cohort, 115 (115/277, 41.5%) with prior LZD exposure yielded 19 (19/277, 6.9%) isolates exhibiting LZD resistance. The LZD resistance rate of LZD-exposed group isolates significantly exceeded the corresponding rate for non-exposed group isolates (P = 0.047). Genetic mutations were observed in 10 (52.6%, 10/19) LZD-resistant isolates, of which a Cys154Arg (36.8%, 7/19) substitution within ribosomal protein L3 was most prevalent. Analysis of sequential positive cultures obtained from 81 LZD-treated patients indicated that cultured organisms obtained from most patients (85.2%, 69/81) retained original LZD MIC values; however, organisms cultured later from two patients exhibited significantly increased MIC values that were attributed to the rplC substitution T460C. Overall, LZD resistance was detected in 6.9% of patients of an MDR-TB cohort in China. Low rate of acquired LZD resistance was noted in MDR-TB treated with BDQ-LZD combination.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3