Characterization of Bacillus cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing

Author:

Bianco Angelica,Capozzi Loredana,Monno Maria Rosa,Del Sambro Laura,Manzulli Viviana,Pesole Graziano,Loconsole Daniela,Parisi Antonio

Abstract

Members of the Bacillus cereus group are spore-forming organisms commonly associated with food poisoning and intestinal infections. Moreover, some strains of the group (i.e., B. cereus sensu stricto and Bacillus thuringiensis) can cause bacteremia in humans, mainly in immunocompromised individuals. Here we performed the genetic characterization of 17 human clinical strains belonging to B. cereus group isolated from blood culture. The whole-genome sequencing (WGS) revealed that the isolates were closely related to B. cereus sensu stricto and B. thuringiensis–type strain. Multilocus sequence typing analysis performed on the draft genome revealed the genetic diversity of our isolates, which were assigned to different sequence types. Based on panC nucleotide sequence, the isolates were grouped in the phylogenetic groups III and IV. The NHE, cer, and inhA gene cluster, entA, entFM, plcA, and plcB, were the most commonly detected virulence genes. Although we did not assess the ability to generate biofilm by phenotypic tests, we verified the prevalence of biofilm associated genes using an in silico approach. A high prevalence of pur gene cluster, xerC, clpY, codY, tasA, sipW, sinI, and sigB genes, was found. Genes related to the resistance to penicillin, trimethoprim, and ceftriaxone were identified in most of the isolates. Intriguingly, the majority of these virulence and AMR genes appeared to be evenly distributed among B. cereus s.s. isolates, as well as closely related to B. thuringiensis isolates. We showed the WGS represents a good approach to rapidly characterize B. cereus group strains, being able to give useful information about genetic epidemiology, the presence of virulence and antimicrobial genes, and finally about the potential hazard related to this underestimated risk.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3