Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products

Author:

Fernandez-Cantos Maria Victoria,Garcia-Morena Diego,Yi Yunhai,Liang Lifeng,Gómez-Vázquez Emilio,Kuipers Oscar P.

Abstract

The Bacteroidales order, widely distributed among diverse human populations, constitutes a key component of the human microbiota. Members of this Gram-negative order have been shown to modulate the host immune system, play a fundamental role in the gut’s microbial food webs, or be involved in pathogenesis. Bacteria inhabiting such a complex environment as the human microbiome are expected to display social behaviors and, hence, possess factors that mediate cooperative and competitive interactions. Different types of molecules can mediate interference competition, including non-ribosomal peptides (NRPs), polyketides, and bacteriocins. The present study investigates the potential of Bacteroidales bacteria to biosynthesize class I bacteriocins, which are ribosomally synthesized and post-translationally modified peptides (RiPPs). For this purpose, 1,136 genome-sequenced strains from this order were mined using BAGEL4. A total of 1,340 areas of interest (AOIs) were detected. The most commonly identified enzymes involved in RiPP biosynthesis were radical S-adenosylmethionine (rSAM), either alone or in combination with other biosynthetic enzymes such as YcaO. A more comprehensive analysis of a subset of 9 biosynthetic gene clusters (BGCs) revealed a consistent association in Bacteroidales BGCs between peptidase-containing ATP-binding transporters (PCATs) and precursor peptides with GG-motifs. This finding suggests a possibly shared mechanism for leader peptide cleavage and transport of mature products. Notably, human metagenomic studies showed a high prevalence and abundance of the RiPP BGCs from Phocaeicola vulgatus and Porphyromonas gulae. The mature product of P. gulae BGC is hypothesized to display γ-thioether linkages and a C-terminal backbone amidine, a potential new combination of post-translational modifications (PTM). All these findings highlight the RiPP biosynthetic potential of Bacteroidales bacteria, as a rich source of novel peptide structures of possible relevance in the human microbiome context.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3