Monitoring indicator genes to assess antimicrobial resistance contamination in phytoplankton and zooplankton communities from the English Channel and the North Sea

Author:

Bourdonnais Erwan,Le Bris Cédric,Brauge Thomas,Midelet Graziella

Abstract

Phytoplankton and zooplankton play a crucial role in marine ecosystems as the basis of the food webs but are also vulnerable to environmental pollutants. Among emerging pollutants, antimicrobial resistance (AMR) is a major public health problem encountered in all environmental compartments. However, the role of planktonic communities in its dissemination within the marine environment remains largely unexplored. In this study, we monitored four genes proposed as AMR indicators (tetA, blaTEM, sul1, and intI1) in phytoplankton and zooplankton samples collected in the English Channel and the North Sea. The indicator gene abundance was mapped to identify the potential sources of contamination. Correlation was assessed with environmental parameters to explore the potential factors influencing the abundance of AMR in the plankton samples. The prevalence in phytoplankton and zooplankton of sul1 and intI1, the most quantified indicator genes, ranged from 63 to 88%. A higher level of phytoplankton and zooplankton carrying these genes was observed near the French and English coasts in areas subjected to anthropogenic discharges from the lands but also far from the coasts. Correlation analysis demonstrated that water temperature, pH, dissolved oxygen and turbidity were correlated to the abundance of indicator genes associated with phytoplankton and zooplankton samples. In conclusion, the sul1 and intI1 genes would be suitable indicators for monitoring AMR contamination of the marine environment, either in phytoplankton and zooplankton communities or in seawater. This study fills a part of the gaps in knowledge about the AMR transport by marine phytoplankton and zooplankton, which may play a role in the transmission of resistance to humans through the marine food webs.

Funder

Région Hauts-de-France

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3