Genome analysis of “Candidatus Aschnera chinzeii,” the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae)

Author:

Koga Ryuichi,Moriyama Minoru,Nozaki Tomonari,Fukatsu Takema

Abstract

Insect–microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont “Candidatus Aschnera chinzeii,” although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4–6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3