A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia

Author:

Asare Paul Tetteh,Lee Chi-Hsien,Hürlimann Vera,Teo Youzheng,Cuénod Aline,Akduman Nermin,Gekeler Cordula,Afrizal Afrizal,Corthesy Myriam,Kohout Claire,Thomas Vincent,de Wouters Tomas,Greub Gilbert,Clavel Thomas,Pamer Eric G.,Egli Adrian,Maier Lisa,Vonaesch Pascale

Abstract

IntroductionMicrobial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization–time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria.MethodsWe constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures.ResultsFor validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates.DiscussionWe describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3