Rumen microbiota helps Tibetan sheep obtain energy more efficiently to survive in the extreme environment of the Qinghai–Tibet Plateau

Author:

Wu Xiukun,Zhang Gaosen,Zhang Wei,Zhou Jianwei,Cong Haitao,Yang Guo,Liu Guangxiu

Abstract

IntroductionT-sheep and H-sheep exhibit different environmental adaptability and production performance. The rumen microbiome has co-evolved with hosts and plays a vital role in nutrient digestion and energy metabolism. In our previous study, we found that T-sheep have a higher efficiency in energy metabolism than H-sheep, but the rumen microbial community remains unclear.MethodsIn this study, we determined the rumen bacterial profile and rumen fermentation parameters to reveal the bacterial profiles and predictive functions among breeds and diets with four different energy levels, as well as the correlation between bacterial profiles and rumen fermentation characteristics.ResultsThe results showed that the rumen total volatile fatty acids (VFAs), acetate, butyrate, total branched-chain VFAs, iso-butyrate, and iso-valerate were higher in T-sheep than H-sheep. The alpha diversity of ruminal bacteria is not affected by dietary energy, but it shows a distinction between the sheep breeds. Specifically, T-sheep rumen bacteria exhibit higher alpha diversity than H-sheep. The beta diversity of ruminal bacteria is not influenced by dietary energy or sheep breeds, indicating similar communities of ruminal bacteria between different diets and sheep breeds. The phyla of Bacteroidetes and Firmicutes predominate in the rumen, with a higher relative abundance of Firmicutes observed in T-sheep than H-sheep. The two most abundant genera in the rumen were Prevotella 1 and Rikenellaceae RC9 gut group. Prevotella 1 is the predominant bacterial genus in the rumen of H-sheep, while the Rikenellaceae RC9 gut group dominates in the rumen of T-sheep. Microbial co-occurrence network analysis reveals that variations in rumen fermentation characteristics result from differences in module abundance, with a higher abundance of VFA-producing modules observed in the rumen of T-sheep. Microbial function prediction analysis showed that dietary energy rarely alters the functional composition of rumen bacteria. However, there were differences in the functions of rumen bacteria between sheep breeds, with T-sheep showing a greater emphasis on energy metabolism-related functions, while H-sheep showed a greater emphasis on protein metabolism-related functions.DiscussionThese findings provide evidence of the special rumen microbial community that helps T-sheep efficiently obtain energy from low-protein and low-energy diets, enabling them to survive in the extreme environment of the Qinghai–Tibet Plateau.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3