Impact of nitrogen addition on the chemical properties and bacterial community of subtropical forests in northern Guangxi

Author:

Jiang Xingjian,Ou Zhiyang,Tan Changqiang,He Qingfei,Zheng Wei,Tan Yibo,He Feng,Shen Hao

Abstract

IntroductionIn recent years, nitrogen deposition has constantly continued to rise globally. However, the impact of nitrogen deposition on the soil physicochemical properties and microbial community structure in northern Guangxi is still unclear.MethodsAlong these lines, in this work, to investigate the impact of atmospheric nitrogen deposition on soil nutrient status and bacterial community in subtropical regions, four different nitrogen treatments (CK: 0 gN m–2 a–1, II: 50 gN m–2 a–1, III: 100 gN m–2 a–1, IV: 150 gNm– 2 a–1) were established. The focus was on analyzing the soil physical and chemical properties, as well as bacterial community characteristics across varying nitrogen application levels.Results and discussionFrom the acquired results, it was demonstrated that nitrogen application led to a significant decrease in soil pH. Compared with CK, the pH of treatment IV decreased by 4.23%, which corresponded to an increase in soil organic carbon and total nitrogen. Moreover, compared with CK, the soil organic carbon of treatment IV increased by 9.28%, and the total nitrogen of treatment IV increased by 19.69%. However, no significant impact on the available nitrogen and phosphorus was detected. The bacterial diversity index first increased and then decreased with the increase of the nitrogen application level. The dominant phylum in the soil was Acidobacteria (34.63–40.67%), Proteobacteria, and Chloroflexi. Interestingly, the abundance of Acidobacteria notably increased with higher nitrogen application levels, particularly evident in the IV treatment group where it surpassed the control group. Considering that nitrogen addition first changes soil nutrients and then lowers soil pH, the abundance of certain oligotrophic bacteria like Acidobacteria can be caused, which showed a first decreasing and then increasing trend. On the contrary, eutrophic bacteria, such as Actinobacteria and Proteobacteria, displayed a decline. From the redundancy analysis, it was highlighted that total nitrogen and pH were the primary driving forces affecting the bacterial community composition.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3