Effects of grazing prohibition on nirK- and nirS-type denitrifier communities in salt marshes

Author:

Li Niu,Li Jingrou,Nie Ming,Wu Ming,Wu Jihua

Abstract

IntroductionGrazing prohibition is an effective management practice to restore salt marsh functioning. However, the effects of grazing exclusion on denitrifying microbial communities and their controlling factors in salt marshes remain unclear.MethodsIn this study, we surveyed soil physicochemical properties and above- and below-ground biomass and using quantitative polymerase chain reaction and Illumina MiSeq high-throughput sequencing technology to determine the relative abundance, composition, and diversity of nitrite reductase nirS- and nirK-type denitrifying bacterial communities associated with grazing prohibition treatments and elevations.ResultsThe abundance of nirS-type denitrifiers increased with grazing prohibition time, whereas the abundance of nirK-type denitrifiers remained unaltered. Moreover, nirS-type denitrifiers were more abundant and diverse than nirK-type denitrifiers in all treatments. Grazing prohibition significantly altered the operational taxonomic unit richness, abundance-based coverage estimator, and Chao1 indices of the nirS-type denitrifying bacterial communities, whereas it only minimally affected the structure of the nirK-type denitrifying bacterial community.DiscussionThe results imply that the nirS community, rather than nirK, should be the first candidate for use as an indicator in the process of salt marsh restoration after grazing prohibition. Substances of concern, total nitrogen, and salinity were the key environmental factors affecting the abundance and community composition of nirS and nirK denitrifiers. The findings of this study provide novel insights into the influence of the length of grazing prohibition and elevation on nirS- and nirK-type denitrifying bacterial community composition in salt marshes.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3