Correlation in endophytic fungi community diversity and bioactive compounds of Sophora alopecuroides

Author:

Ju Mingxiu,Zhang Qingchen,Wang Ruotong,Yan Siyuan,Li Zhengnan,Li Peng,Gu Peiwen

Abstract

Sophora alopecuroides L. is a traditional Chinese medicine used for the treatment of several different disease states including bacillary dysentery and enteritis. But importantly, it also plays a role as an anti-tumor agent. That said, little is known about the role endophytes play regarding the clinically bioactive metabolites in S. alopecuroides. In order to explore the effects of endophytic fungi on the accumulation, quality, and correlation in the content of the medicinal compounds, the structural diversity of endophytic fungi in S. alopecuroides was analyzed. The relationship between endophytes and quinolizidine alkaloids (QAs), housed within the seeds of S. alopecuroides, which were interpreted based on established methods of high-throughput sequencing and high-performance liquid chromatography. A total of 1,034,418 effective sequence reads and 257 operational taxonomic units (OTUs) were obtained from 33 samples which were sourced from 11 different sampling sites and further classified into 9 phyla, 20 classes, 45 orders, 85 families, and 118 genera. Ascomycota was found to be the dominant phylum of endophytic fungi in S. alopecuroides, with a relative abundance ranging from 60.85 to 98.30%. Alternaria, Cladosporium, Filobasidium, and an unidentified Ascomycota were the core-shared endophytes, accounting for 49.96, 27.12, 14.83, and 7.88%, respectively. Correlation analysis showed that the Simpson’s diversity index of endophytic fungal community in S. alopecuroides was significantly positively correlated with the Oxymatrine (OMA) content in different areas, while the Chao and Shannoneven indexes were significantly negatively correlated with OMA. The endophytic fungi of Alternaria were positively correlated with the content of OMA, Oxysophocarpine (OSC), and total QAs. This study has mastered the endophytic fungi resources of S. alopecuroides, explored potential functional endophytic fungi, and provided a scientific basis for using biological fertilization strategies to improve the quality of S. alopecuroides.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference53 articles.

1. Towards a unified paradigm for verification and validation of systems engineering design models;Alawneh;Proceedings of the IASTED International Conference on Software Engineering,2006

2. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.;Bokulich;Nat. Methods,2013

3. QIIME allows analysis of high-throughput community sequencing data.;Caporaso;Nat. Methods,2010

4. Analysis of endophyte diversity of rheum palmatum from different production areas in gansu province of china and the association with secondary metabolite.;Chen;Microorganisms,2021

5. Core microbiome of medicinal plant salvia miltiorrhiza seed: A rich reservoir of beneficial microbes for secondary metabolism?;Chen;Int. J. Mol. Sci.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3