From cereus to anthrax and back again: Assessment of the temperature-dependent phenotypic switching in the “cross-over” strain Bacillus cereus G9241

Author:

Manoharan Shathviga,Taylor-Joyce Grace,Brooker Thomas A.,Hernández Rodríguez Carmen Sara,Hapeshi Alexia,Baldwin Victoria,Baillie Les,Oyston Petra C. F.,Waterfield Nicholas R.

Abstract

Bacillus cereus G9241 was isolated from a Louisiana welder suffering from an anthrax-like infection. The organism carries two transcriptional regulators that have previously been proposed to be incompatible with each other in Bacillus anthracis: the pleiotropic transcriptional regulator PlcR found in most members of the Bacillus cereus group but truncated in all B. anthracis isolates, and the anthrax toxin regulator AtxA found in all B. anthracis strains and a few B. cereus sensu stricto strains. Here we report cytotoxic and hemolytic activity of cell free B. cereus G9241 culture supernatants cultured at 25°C to various eukaryotic cells. However, this is not observed at the mammalian infection relevant temperature 37°C, behaving much like the supernatants generated by B. anthracis. Using a combination of genetic and proteomic approaches to understand this unique phenotype, we identified several PlcR-regulated toxins to be secreted highly at 25°C compared to 37°C. Furthermore, results suggest that differential expression of the protease involved in processing the PlcR quorum sensing activator molecule PapR appears to be the limiting step for the production of PlcR-regulated toxins at 37°C, giving rise to the temperature-dependent hemolytic and cytotoxic activity of the culture supernatants. This study provides an insight on how B. cereus G9241 is able to “switch” between B. cereus and B. anthracis–like phenotypes in a temperature-dependent manner, potentially accommodating the activities of both PlcR and AtxA.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3