The causal effects between gut microbiota and hemorrhagic stroke: a bidirectional two-sample Mendelian randomization study

Author:

Shen Yingjie,Liu Hao,Meng Xiangyi,Gao Aili,Liu Yansong,Ma Wei,Liang Hongsheng,Hu Fulan

Abstract

BackgroundRecent studies have suggested that the composition of gut microbiota (GM) may change after intracerebral hemorrhage. However, the causal inference of GM and hemorrhagic stroke is unknown. Mendelian Randomization (MR) is an effective research method that removes confounding factors and investigates the causal relationship between exposure and outcome. This study intends to explore the causal relationship between GM and hemorrhagic stroke with the help of MR.MethodsUnivariable and multivariable MR analyses were performed using summary statistics of the GM (n = 18,340) in the MiBioGen consortium vs. the FinnGen consortium R9 summary statistics (intracerebral hemorrhage, subarachnoid hemorrhage, and nontraumatic intracranial hemorrhage). Causal associations between gut microbiota and hemorrhagic stroke were analyzed using inverse variance weighted, MR-Egger regression, weighted median, weighted mode, simple mode, and MR-PRESSO. Cochran’s Q statistic, MR-Egger regression, and leave-one-out analysis were used to test for multiplicity and heterogeneity of instrumental variables. Separate reverse MR analyses were performed for microbiota found to be causally associated with hemorrhagic stroke in the forward MR analysis. Also, multivariate MR analyses were conducted after incorporating common confounders.ResultsBased on the results of univariable and multivariate MR analyses, Actinobacteria (phylum) (OR, 0.80; 95%CI, 0.66–0.97; p = 0.025) had a protective effect against hemorrhagic stroke, while Rikenellaceae RC9 gut group (genus) (OR, 0.81; 95%CI, 0.67–0.99; p = 0.039) had a potential protective effect. Furthermore, Dorea (genus) (OR, 1.77; 95%CI, 1.27–2.46; p = 0.001), Eisenbergiella (genus) (OR, 1.24; 95%CI, 1.05–1.48; p = 0.013) and Lachnospiraceae UCG008 (genus) (OR, 1.28; 95%CI, 1.01–1.62; p = 0.041) acted as potential risk factors for hemorrhagic stroke. The abundance of Dorea (genus) (β, 0.05; 95%CI, 0.002 ~ 0.101; p = 0.041) may increase, and that of Eisenbergiella (genus) (β, −0.072; 95%CI, −0.137 ~ −0.007; p = 0.030) decreased after hemorrhagic stroke according to the results of reverse MR analysis. No significant pleiotropy or heterogeneity was detected in any of the MR analyses.ConclusionThere is a significant causal relationship between GM and hemorrhagic stroke. The prevention, monitoring, and treatment of hemorrhagic stroke through GM represent a promising avenue and contribute to a deeper understanding of the mechanisms underlying hemorrhagic stroke.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3