Next generation sequencing-aided screening, isolation, molecular identification, and antimicrobial potential for bacterial endophytes from the medicinal plant, Elephantorrhiza elephantina

Author:

Tlou Matsobane,Ndou Benedict,Mabona Nokufa,Khwathisi Adivhaho,Ateba Collins,Madala Ntakadzeni,Serepa-Dlamini Mahloro Hope

Abstract

Elephantorrhiza elephantina, a wild plant in southern Africa, is utilized in traditional medicine for various ailments, leading to its endangerment and listing on the Red List of South African Plants. To date, there have been no reports on bacterial endophytes from this plant, their classes of secondary metabolites, and potential medicinal properties. This study presents (i) taxonomic characterization of bacterial endophytes in leaf and root tissues using 16S rRNA, (ii) bacterial isolation, morphological, and phylogenetic characterization, (iii) bacterial growth, metabolite extraction, and LC–MS-based metabolite fingerprinting, and (iv) antimicrobial testing of bacterial crude extracts. Next-generation sequencing yielded 693 and 2,459 DNA read counts for the rhizomes and leaves, respectively, detecting phyla including Proteobacteria, Bacteroidota, Gemmatimonadota, Actinobacteriota, Verrucomicrobiota, Dependentiae, Firmicutes, and Armatimonodata. At the genus level, Novosphingobium, Mesorhizobium, Methylobacterium, and Ralstonia were the most dominant in both leaves and rhizomes. From root tissues, four bacterial isolates were selected, and 16S rRNA-based phylogenetic characterization identified two closely related Pseudomonas sp. (strain BNWU4 and 5), Microbacterium oxydans BNWU2, and Stenotrophomonas maltophilia BNWU1. The ethyl acetate:chloroform (1:1 v/v) organic extract from each isolate exhibited antimicrobial activity against all selected bacterial pathogens. Strain BNWU5 displayed the highest activity, with minimum inhibitory concentrations ranging from 62.5 μg/mL to 250 μg/mL against diarrhoeagenic Escherichia coli, Escherichia coli O157:H7, Salmonella enterica, antibiotic-resistant Vibrio cholerae, Staphylococcus aureus, Bacillus cereus, and Enterococcus durans. LC–MS analysis of the crude extract revealed common antimicrobial metabolites produced by all isolates, including Phenoxomethylpenicilloyl (penicilloyl V), cis-11-Eicosenamide, 3-Hydroxy-3-phenacyloxindole, and 9-Octadecenamide.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3