A modified multiple cross displacement amplification linked with a gold nanoparticle biosensor for the detection of Epstein-Barr virus in clinical applications

Author:

Zeng Xiaoyan,Yang Xinggui,Yang Ludi,Yi Xu,Chen Xu,Huang Junfei,Wang Yu,Li Shijun

Abstract

Epstein-Barr virus (EBV), a double-stranded DNA virus belonging to the family Herpesviridae, infects more than 95% of healthy adults by attacking the host immune system. Here, a novel detection protocol, utilizing the modified multiple cross displacement amplification (MCDA) technique combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB), was devised and developed to detect EBV infection (termed EBV-MCDA-LFB assay). Ten MCDA primers targeting the EBNA-LP gene were designed, including CP1* primers modified with 6-carboxyfluorescein (FAM) and D1* primers modified with biotin. Then, nucleic acid templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-MCDA-LFB assay. As a result, the lowest concentration of EBNA-plasmids, which can be detected by MCDA-LFB assay with an optimal reaction condition of 67°C for 30 min, was 10 copies/reaction. Here, the MCDA-LFB assay can detect all EBV pathogens used in the study, and no cross-reactions with non-EBV organisms were observed. Meanwhile, the entire detection workflow of the EBV-MCDA-LFB assay for whole blood samples, including DNA template preparation (25 min), EBV-MCDA amplification (30 min), and AuNPs-LFB-mediated validation (2–5 min), can be completed within 1 h. Taken together, the EBV-MCDA-LFB assay established in the current study is a rapid, simplified, sensitive, specific, and easy-to-obtain technique that can be used as a screening or diagnostic tool for EBV infection in clinical applications, especially in resource-poor regions.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3