Novel dithiocarbamate derivatives are effective copper-dependent antimicrobials against Streptococcal species

Author:

Menghani Sanjay V.,Sanchez-Rosario Yamil,Pok Chansorena,Liu Renshuai,Gao Feng,O’Brien Henrik,Neubert Miranda J.,Ochoa Klariza,Durckel Meredythe,Hellinger Riley D.,Hackett Nadia,Wang Wei,Johnson Michael D. L.

Abstract

Despite the availability of several vaccines against multiple disease-causing strains of Streptococcus pneumoniae, the rise of antimicrobial resistance and pneumococcal disease caused by strains not covered by the vaccine creates a need for developing novel antimicrobial strategies. N,N-dimethyldithiocarbamate (DMDC) was found to be a potent copper-dependent antimicrobial against several pathogens, including S. pneumoniae. Here, DMDCs efficacy against Streptococcal pathogens Streptococcus pyogenes, Streptococcus agalactiae, and Streptococcus anginosus was tested using bactericidal and inductively coupled plasma - optical emission spectrometry. After confirming DMDC as broad-spectrum streptococcal antimicrobial, DMDC was derivatized into five compounds. The derivatives’ effectiveness as copper chelators using DsRed2 and as copper-dependent antimicrobials against S. pneumoniae TIGR4 and tested in bactericidal and animal models. Two compounds, sodium N-benzyl-N-methyldithiocarbamate and sodium N-allyl-N-methyldithiocarbamate (herein “Compound 3” and “Compound 4”), were effective against TIGR4 and further, D39 and ATCC® 6303™ _(a type 3 capsular strain). Both Compound 3 and 4 increased the pneumococcal internal concentrations of copper to the same previously reported levels as with DMDC and copper treatment. However, in an in vivo murine pneumonia model, Compound 3, but not Compound 4, was effective in significantly decreasing the bacterial burden in the blood and lungs of S. pneumoniae-infected mice. These derivatives also had detrimental effects on the other streptococcal species. Collectively, derivatizing DMDC holds promise as potent bactericidal antibiotics against relevant streptococcal pathogens.

Funder

NIGMS

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3