Automatic identification and quantification of volcanic hotspots in Alaska using HotLINK: the hotspot learning and identification network

Author:

Saunders-Shultz Pablo,Lopez Taryn,Dietterich Hannah,Girona Társilo

Abstract

An increase in volcanic thermal emissions can indicate subsurface and surface processes that precede, or coincide with, volcanic eruptions. Space-borne infrared sensors can detect hotspots—defined here as localized volcanic thermal emissions—in near-real-time. However, automatic hotspot detection systems are needed to efficiently analyze the large quantities of data produced. While hotspots have been automatically detected for over 20 years with simple thresholding algorithms, new computer vision technologies, such as convolutional neural networks (CNNs), can enable improved detection capabilities. Here we introduce HotLINK: the Hotspot Learning and Identification Network, a CNN trained to detect hotspots with a dataset of −3,800 satellite-based, Visible Infrared Imaging Radiometer Suite (VIIRS) images from Mount Veniaminof and Mount Cleveland volcanoes, Alaska. We find that our model achieves an accuracy of 96% (F1-score 0.92) when evaluated on −1,700 unseen images from the same volcanoes, and 95% (F1-score 0.67) when evaluated on −3,000 images from six additional Alaska volcanoes (Augustine Volcano, Bogoslof Island, Okmok Caldera, Pavlof Volcano, Redoubt Volcano, Shishaldin Volcano). In comparison with an existing threshold-based hotspot detection algorithm, MIROVA (Coppola et al., Geological Society, London, Special Publications, 2016, 426, 181–205), our model detects 22% more hotspots and produces 12% fewer false positives. Additional testing on −700 labeled Moderate Resolution Imaging Spectroradiometer (MODIS) images from Mount Veniaminof demonstrates that our model is applicable to this sensor’s data as well, achieving an accuracy of 98% (F1-score 0.95). We apply HotLINK to 10 years of VIIRS data and 22 years of MODIS data for the eight aforementioned Alaska volcanoes and calculate the radiative power of detected hotspots. From these time series we find that HotLINK accurately characterizes background and eruptive periods, similar to MIROVA, but also detects more subtle warming signals, potentially related to volcanic unrest. We identify three advantages to our model over its predecessors: 1) the ability to detect more subtle volcanic hotspots and produce fewer false positives, especially in daytime images; 2) probabilistic predictions provide a measure of detection confidence; and 3) its transferability, i.e., the successful application to multiple sensors and multiple volcanoes without the need for threshold tuning, suggesting the potential for global application.

Publisher

Frontiers Media SA

Reference70 articles.

1. TensorFlow: large-scale machine learning on heterogeneous systems AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. 2015

2. About Face ID advance technology2023

3. The capabilities of FY-3D/MERSI-II sensor to detect and quantify thermal volcanic activity: the 2020–2023 Mount Etna case study;Aveni;Remote Sens.,2023

4. Review of the utility of infrared remote sensing for detecting and monitoring volcanic activity with the case study of shortwave infrared data for Lascar Volcano from 2001–2005;Blackett;Geol. Soc. Lond. Spec. Publ.,2013

5. An overview of infrared remote sensing of volcanic activity;Blackett;J. Imaging,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3