A coal bursting liability evaluation model based on fuzzy set theory and analysis of three influencing factors

Author:

Wang Chao,Jin Zijun,Liu Xiaofei,Wang Tuanhui,Liu Yu,Zhang Shaoyuan,Wang Qiwei

Abstract

The classification of coal bursting liability is of great significance for the prevention and control of rock burst. To address the shortcomings in existing bursting liability classification methods, a comprehensive evaluation model for bursting liability based on a combination of weighted-fuzzy set theory and three influencing factor analyses is proposed. The model selects four evaluation indicators: dynamic failure time (DT), elastic energy index (WET), bursting energy index (KE), and uniaxial compressive strength (RC). Two types of membership functions, trapezoidal fuzzy numbers (TFN) and Gaussian fuzzy numbers (GFN), are used to quantitatively describe the fuzziness between indicator levels. The Delphi method and a random forest feature identification method are combined to obtain a subjective and objective combined weighting, determining the optimal combination weight of the four indicators. Based on Zadeh operator (ZO), maximum-minimum operator (MMO), weighted-average operator (WAO), and all-around restrictive operator (ARO), calculations are carried out for the synthesis of indicator weights and memberships. Maximal membership principle (MMP) and Credible identification principle (CIP) are utilized as evaluation principle to assess the bursting liability level, constructing 16 fuzzy comprehensive evaluation models. The impact of membership functions, fuzzy operators, and evaluation principle on evaluation results are systematically analyzed based on the discrimination results of 127 sample sets. The results show that the optimal fuzzy comprehensive evaluation model is constructed using the trapezoidal fuzzy numbers, weighted average operator, and maximal membership principle (TFN-WAO-MMP), with a classification accuracy of 97.64%. Finally, the optimal model is applied to 10 engineering instances, and the evaluation results are consistent with the actual situation, verifying the reliability and effectiveness of the model. Overall, these findings contribute to the development of a more sophisticated and accurate method for assessing the rock burst tendency of coal specimens. By leveraging the theory of fuzzy sets, this approach provides a more nuanced and nuanced evaluation of rock burst tendency, and thus offers the potential to improve workplace safety and efficiency in the coal mining industry.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3