Mine waste rock as a soil amendment for enhanced weathering, ecosystem services, and bioenergy production

Author:

Russell Mackenzie D.,Heckman Katherine A.,Pan Lei,Ye Xinyu,Zalesny Ronald S.,Kane Evan S.

Abstract

Enhanced weathering of terrestrial rock material is a promising method for the removal of anthropogenic CO2 emissions from the atmosphere. Herein, we demonstrate that an ameliorated mining waste product can be effectively weathered in the soil environment when used as a soil amendment in conjunction with the cultivation of fast-growing willows (Salix matsudana Koidz. ⨯ S. alba L. “Austree”) in a pot study environment. Utilizing this locally sourced amendment minimizes emissions associated with grinding and transportation of enhanced weathering materials. Results showed that the willows were able to tolerate the relatively high metal concentrations of this amendment and sequester inorganic carbon (C) through the production of bicarbonate in soil solution. During the period of peak plant growth (10 weeks after planting), alkalinity measurements of soil solution from pots with willows and the addition of 25% by mass mine waste product indicated an additional 10 mg of inorganic C sequestration per liter of leached soil solution compared to unamended soils with willows. This represents 4.5 times the inorganic C sequestration rate of unamended soils. The addition of ameliorated mining waste also increased the pH of the soil solution by up to two units (pH of 6 in control vs. pH of 8 with the addition of 25% by mass mineral amendment). In addition to inorganic C sequestration, weathering of the ameliorated mining waste product may also provide base cations (such as calcium and magnesium) which could improve soil fertility. These results are encouraging for future investigation of ameliorated mine waste rock to sequester carbon and enhance the production of willows grown for ecosystem services and phytotechnologies.

Publisher

Frontiers Media SA

Reference80 articles.

1. Soil Acidity and Liming

2. Acid Mine Drainage (AMD): causes, treatment and case studies;Akcil;J. Clean. Prod.,2006

3. Phytoremediation of heavy metals--concepts and applications;Ali;Chemosphere,2013

4. Terrestrial higher plants which hyperaccumulate metallic elements A review of their distribution, ecology and phytochemistry;Baker;Biorecovery,1989

5. Potential for large-scale CO2 removal via enhanced rock weathering with croplands;Beerling;Nature,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3