Response of fatal landslides to precipitation over the Chinese Loess Plateau under global warming

Author:

Guan Xiaodan,Sun Wen,Kong Xiangning,Zhang Fanyu,Huang Jianping,He Yongli

Abstract

Rain-induced loess landslides are especially prevalent in the Chinese Loess Plateau (CLP). Some became fatal landslide disasters, leading to numerous casualties and significant socioeconomic losses. Extreme precipitation is the main cause of landslide occurrence. Therefore, in this study we discuss the correlation between seven extreme precipitation indices, single continuous precipitation events and fatal landslides in the CLP using Pearson correlation analysis. We also predict future precipitation under climate changes using five optimal CMIP6 models. During the period 2004–2016, fatal landslides in the CLP increased at a rate of 0.6 per year, with frequent landslide events occurring especially in the central and southwestern parts of the CLP. We find that SDII (simple daily intensity precipitation index) and R×5day (max 5-day precipitation amount) show spatial distribution that are consistent with fatal landslides. Extreme precipitation events were frequent after year 2000; and several extreme precipitation indices show an increasing trend with a higher magnitude since 2000 than before 2000. In particular, in 2013 when the number of fatal landslides was as high as 17, SDII, R95pTOT (extremely wet days), R25mm (very heavy precipitation days), and R×5day all showed abrupt increases. Single continuous precipitation events have profound effects on fatal landslides. We show that single continuous precipitation events with cumulative precipitation of 185–235 mm and duration of 6 days or longer have the highest correlation with fatal landslides. As the increasing occurrence of extreme rainfall events by the global warming, the CLP may face more fatal landslides in the future, especially in the high emission scenario of greenhouse gases (GHGs).

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3