Characteristics of in situ stress field of coalbed methane reservoir and its influence on permeability in western Guizhou coalfield, China

Author:

Lv Fang,Yang Ruidong,Yi Tongsheng,Gao Wei,Wang Xu,Cheng Wei,Zhang Yan,Li Ronglei,Yan Zhihua,Liu Yaohui,Li Geng

Abstract

In-situ stress is an important indicator for the preferential selection of coalbed methane (CBM) exploration dessert zones, and is a key factor affecting the production capacity of coalbed methane wells. Coal reservoir permeability is one of the key parameters to evaluate the recoverability and modifiability of coalbed methane and reflects the seepage capacity of coal reservoirs. In this study, in situ stress data were collected from multiple injection/fall-off tests of multiple parameter wells in western Guizhou province, China The relationships among parameters such as pore pressure (Pp), closure pressure (Pc), breakdown pressure (Pb), in situ stress, coal permeability, and depth were explore. Using Anderson’s classification method, the distribution of three different in situ stress states was counted. A new simplified model diagram of triaxial principal stress and depth in the study area is proposed by linearly fitting the triaxial principal stress and burial depth. The envelope equation and median equation of the lateral pressure coefficient k-value stress ratio with depth of burial obtained by Brown and Hoek method were calculated using hyperbolic regression algorithm. The k-values were found to be discrete at shallower depths and converge at deeper depths, gradually converging to .65. The control of in situ stress on the permeability of coal reservoirs was explored, and a strong positive correlation was found between the permeability and the Z-shaped variation of the lateral pressure coefficient k-values at shallow depths of 1,000 m. Also, the distribution pattern of vertical permeability basically corresponds to the stress transition zone from the strike-slip fault mode to the normal fault mode. The coal seam permeability has a strong sensitivity to effective in situ stress (EIS). In this study, the least squares method with multiple fitting of power exponents is applied to analyze the control mechanism of EIS on permeability in depth and reveal a new relationship between permeability and EIS that is different from that considered by previous authors. Summarizing the above research results, the vertical CBM in western Guizhou is divided into three development potential zones, and 400–1,000 m burial depth is the most favorable vertical development zone.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference85 articles.

1. The dynamics of faulting;Anderson;W.S. Cowell.,1951

2. In-situ stress and coal bed methane potential in Western Canada;Bell;Bull. Can. Petroleum Geol.,2006

3. CBM resources and distribution in China;Bi;Pet. Knowl.,2018

4. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-Frequency range;Biot;J. Acoust. Soc. Am.,1962

5. Permeability of coals and characteristics of desorption tests: Implications for coalbed methane production;Bodden;Int. J. Coal Geol.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3