Earth system science applications of next-generation SEM-EDS automated mineral mapping

Author:

Han Shujun,Lӧhr Stefan C.,Abbott April N.,Baldermann Andre,Farkaš Juraj,McMahon William,Milliken Kitty L.,Rafiei Mehrnoush,Wheeler Cassandra,Owen Michael

Abstract

Sedimentary rocks contain a unique record of the evolution of the Earth system. Deciphering this record requires a robust understanding of the identity, origin, composition, and post-depositional history of individual constituents. Petrographic analysis informed by Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) mineral mapping can reveal the mineral identity, morphology and petrological context of each imaged grain, making it a valuable tool in the Earth Scientist’s analytical arsenal. Recent technological developments, including quantitative deconvolution of mixed-phase spectra (producing “mixels”), now allow rapid quantitative SEM-EDS-based analysis of a broad range of sedimentary rocks, including the previously troublesome fine-grained lithologies that comprise most of the sedimentary record. Here, we test the reliability and preferred mineral mapping work flow of a modern Field-Emission scanning electron microscope equipped with the Thermofisher Scientific Maps Mineralogy mineral mapping system, focusing on mud/siltstones and calcareous shales. We demonstrate that SEM-EDS mineral mapping that implements 1) a strict error minimization spectral matching approach and 2) spectral deconvolution to produce ‘mixels’ for mixed-phase X-ray volumes can robustly identify individual grains and produce quantitative mineralogical data sets comparable to conventional X-ray diffraction (XRD) analysis (R2 > 0.95). The correlation between SEM-EDS and XRD-derived mineralogy is influenced by mineral abundance, processing modes and mapped area characteristics. Minerals with higher abundance (>10 wt%) show better correlation, likely the result of increased uncertainty for XRD quantification of low-abundance phases. Automated spectral deconvolution to produce ‘mixels’ greatly reduces the proportion of unclassified pixels, especially in the fine-grained fraction, ultimately improving mineral identification and quantification. Mapping of larger areas benefits bulk mineralogy analysis, while customized area size and shape allows high-resolution in situ mineralogical analysis. Finally, we review SEM-EDS-based mineral mapping applications in the Earth Sciences, via case studies illustrating 1) approaches for the quantitative differentiation of various mineral components including detrital (allogenic), syndepositional (authigenic) and burial diagenetic phases, 2) the origin and significance of lamination, 3) the effectiveness and appropriateness of sequential leaching in geochemical studies, and 4) the utility of mineral maps to identify target grains within specific petrological contexts for in situ geochemical or geochronological analysis.

Funder

Australian Research Council

China Scholarship Council

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference104 articles.

1. Are clay minerals the primary control on the oceanic rare Earth element budget?;Abbott;Front. Mar. Sci.,2019

2. Widespread lithogenic control of marine authigenic neodymium isotope records? Implications for paleoceanographic reconstructions;Abbott;Geochim. Cosmochim. Acta,2022

3. Sandstone reservoir quality prediction: The state of the art;Ajdukiewicz;Am. Assoc. Pet. Geol. Bull.,2010

4. The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey;Akbulut;Clays Clay Min.,2003

5. 12. Effects of the middle to late devonian spread of vascular land plants on weathering regimes, marine biotas, and global climate;Algeo,2001

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3