A self-supervision rockburst risk prediction algorithm based on automatic mining of rockburst prediction index features

Author:

Zhang Xiufeng,Zhang Haikuan,Li Haitao,Li Guoying,Xue Shanshan,Yin Haichen,Chen Yang,Han Fei

Abstract

The rockburst risk prediction based on microseismic (MS) data is an important research task in deep mine safety prevention. However, the lack of systematic research on explicit prediction indexes and the waste of a large amount of unlabeled data are still two main problems that hinder the development of rockburst prediction. In this paper, the acoustic emission (AE) event distribution at each coal rock deformation and failure stage is studied based on the laboratory experiment. The spatial-temporal evolution of rockburst in MS data of coal mine fields is explored. Based on systematic research of the AE and MS distribution features considering the physical logic of coal rock mass failure, nine different rockburst prediction indexes are employed to describe the MS data features before rockburst. Then, according to the rockburst prediction indexes, a new self-supervision rockburst risk prediction algorithm is constructed, consisting of the pre-trained model and fine-tuning model with the same encoder and decoder structure. The pre-trained model is trained with unlabeled MS data to automatically learn rockburst prediction index features by reconstructing the masked indexes. Based on the pre-trained encoder and decoder parameters, the fine-tuning model is trained with the labeled MS data to predict rockburst risk. A large number of experiments show that the proposed rockburst prediction self-supervision algorithm is far superior to previous algorithms, by effectively utilizing unlabeled data. The ablation experiment also proves the validity of the studied rockburst prediction indexes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3