Unraveling the complex burial history of the Antrim formation in Michigan basin using paleomagnetism, rock magnetism and geochemistry

Author:

Heij Gerhard,Elmore Richard Douglas

Abstract

This paper presents an integrated paleomagnetic, rock magnetic and geochemical study of the Devonian Antrim shale in the Michigan Basin. Specimens were obtained from two unoriented vertical cores (named St. Chester and Krocker) and sampled relative to a master specimen orientation line. Alternating field (AF) demagnetization experiments isolated a lower coercivity component (LC) from 0 to ∼60 mT in the Krocker core and corresponds to a Jurassic (170 Ma ± 25) magnetization. Higher coercivity components (HC) in the Krocker core are unblocked from ∼60 to 120 mT and unlike LC components, occasionally exhibit stable unblocking temperature ranges (e.g., 150–450°C) and higher AF demagnetization ranges (∼60–120 mT). HC components in the Krocker core are unique to certain members within the Antrim shale with a poorly resolved Middle Permian/Late Triassic magnetization in the Paxton member and Late Pennsylvanian (305 Ma ± 10) component in the Norwood. The St. Chester well exhibited a LC component among all specimens with a slightly older (205 Ma ± 10) than the Krocker core. Rock magnetic parameters indicate the magnetization resides in PSD/SD magnetite in both HC and LC components. Overall, the magnetizations are interpreted to be chemical remanent magnetizations (CRMs) with the HC component residing in SD magnetite which formed during hydrothermal activity in both cores. The LC component likely resides in PSD/MD magnetite and is interpreted to have formed in response to fluid flow associated with tectonic uplift and/or hydrocarbon migration. Petrographic observations indicate mineral assemblages consistent with hydrothermal mineralization (e.g., baroque dolomite). Depleted δ18O data from carbonate fractures are consistent with a hydrothermal fluid magnetization mechanism. Consistent anisotropy of magnetic susceptibility (AMS) lineations indicates either a long-lived paleocurrent direction or far-field tectonic shortening originating from the neighboring Acadian orogeny. Inorganic geochemistry indicate that paramagnetic Fe-rich clays carry the AMS signal. Lastly, an evaluation of the origin of chalcopyrite and monazite is performed through provenance analysis. These minerals are attributed to hydrothermal mineralization however, strong evidence suggests that some fraction of these grains were sourced from the Michigan Peninsula.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3