Author:
Ahn Jae-Kwang,Park Euna,Kim Byeonghak,Hwang Eui-Hong,Hong Seongwon
Abstract
Earthquake Early Warning (EEW) is an alert system, based on seismic wave propagation theory, to reduce human casualties. EEW systems mainly utilize technologies through both network-based and on-site methods. The network-based method estimates the hypocenter and magnitude of an earthquake using data from multiple seismic stations, while the on-site method predicts the intensity measures from a single seismic station. Therefore, the on-site method reduces the lead time compared to the network-based method but is less accurate. To increase the accuracy of on-site EEW, our system was designed with a hybrid method, which included machine learning algorithms. At this time, machine learning was used to increase the accuracy of the initial P-wave identification rate. Additionally, a new approach using a nearby seismic station, called the 1+ α method, was proposed to reduce false alarms. In this study, an on-site EEW trial operation was performed to evaluate its performance. The warning cases for small and large events were reviewed and the possibility of stable alert decisions was confirmed.
Funder
Korea Meteorological Administration
National Research Foundation of Korea
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献