Long-term hydrological monitoring of soils in the terraced environment of Cinque Terre (north-western Italy)

Author:

Fiorucci Matteo,Pepe Giacomo,Marmoni Gian Marco,Pecci Massimo,Di Martire Diego,Guerriero Luigi,Bausilio Giuseppe,Vitale Enza,Raso Emanuele,Raimondi Luca,Cevasco Andrea,Calcaterra Domenico,Scarascia Mugnozza Gabriele

Abstract

Terraced landscapes represent one of the most widespread human-induced/man-made transformations of hilly-mountainous environments. Slope terracing produces peculiar morphologies along with unusual soil textures and stratigraphic features, which in turn strongly influence slope hydrology. The investigation of the hydrological features of terraced soils is of fundamental importance for understanding the hydrological dynamics occurring in these anthropogenic landscapes, especially during rainfall events. To this purpose, the availability of extensive field monitoring data series and of information on subsoil properties and structure is essential. In this study, multi-sensor hydrological data were acquired over a period longer than 2 years in the experimental site of Monterosso al Mare, in the Cinque Terre National Park (Liguria region, Italy), one of the most famous examples of terraced landscape worldwide. Monitoring data were coupled with accurate engineering-geological investigations to achieve the hydro-mechanical characterization of backfill soils and to investigate their hydrological response at both the seasonal and the single rainstorm scale. The results indicated that the coarse-grained, and anthropically remolded texture of the soils favors the rapid infiltration of rainwater, producing sharp changes in both soil volumetric water content and pore water pressure. Furthermore, the pattern of hydrological parameters showed seasonal trends outlined by alternating phases of slow drying and fast wetting. The study outcomes provide useful insights on the short and long-term evolution of hydrological factors operating in agricultural terraces. These findings represent a useful basis for a better understanding of the time-dependent processes that guide water circulation in terraced systems, which have a key role in controlling the occurrence of erosion and landslide processes.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3