Molecular Big Data in Sports Sciences: State-of-Art and Future Prospects of OMICS-Based Sports Sciences

Author:

Sellami Maha,Elrayess Mohamed A.,Puce Luca,Bragazzi Nicola Luigi

Abstract

Together with environment and experience (that is to say, diet and training), the biological and genetic make-up of an athlete plays a major role in exercise physiology. Sports genomics has shown, indeed, that some DNA single nucleotide polymorphisms (SNPs) can be associated with athlete performance and level (such as elite/world-class athletic status), having an impact on physical activity behavior, endurance, strength, power, speed, flexibility, energetic expenditure, neuromuscular coordination, metabolic and cardio-respiratory fitness, among others, as well as with psychological traits. Athletic phenotype is complex and depends on the combination of different traits and characteristics: as such, it requires a “complex science,” like that of metadata and multi-OMICS profiles. Several projects and trials (like ELITE, GAMES, Gene SMART, GENESIS, and POWERGENE) are aimed at discovering genomics-based biomarkers with an adequate predictive power. Sports genomics could enable to optimize and maximize physical performance, as well as it could predict the risk of sports-related injuries. Exercise has a profound impact on proteome too. Proteomics can assess both from a qualitative and quantitative point of view the modifications induced by training. Recently, scholars have assessed the epigenetics changes in athletes. Summarizing, the different omics specialties seem to converge in a unique approach, termed sportomics or athlomics and defined as a “holistic and top-down,” “non-hypothesis-driven research on an individual’s metabolite changes during sports and exercise” (the Athlome Project Consortium and the Santorini Declaration) Not only sportomics includes metabonomics/metabolomics, but relying on the athlete’s biological passport or profile, it would enable the systematic study of sports-induced changes and effects at any level (genome, transcriptome, proteome, etc.). However, the wealth of data is so huge and massive and heterogenous that new computational algorithms and protocols are needed, more computational power is required as well as new strategies for properly and effectively combining and integrating data.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3