Water-soluble trehalose glycolipids show superior Mincle binding and signaling but impaired phagocytosis and IL-1β production

Author:

Manthrirathna M. A. Thathsaranie P.,Dangerfield Emma M.,Ishizuka Shigenari,Woods Aodhamair,Luong Brenda S.,Yamasaki Sho,Timmer Mattie S. M.,Stocker Bridget L.

Abstract

The tremendous potential of trehalose glycolipids as vaccine adjuvants has incentivized the study of how the structures of these ligands relate to their Mincle-mediated agonist activities. Despite this, structure-activity work in the field has been largely empirical, and less is known about how Mincle-independent pathways might be affected by different trehalose glycolipids, and whether Mincle binding by itself can serve as a proxy for adjuvanticity. There is also much demand for more water-soluble Mincle ligands. To address this need, we prepared polyethylene glycol modified trehalose glycolipids (PEG-TGLs) with enhanced water solubility and strong murine Mincle (mMincle) binding and signaling. However, only modest cytokine and chemokine responses were observed upon the treatment of GM-CSF treated bone-marrow cells with the PEG-TGLs. Notability, no IL-1β was observed. Using RNA-Seq analysis and a representative PEG-TGL, we determined that the more water-soluble adducts were less able to activate phagocytic pathways, and hence, failed to induce IL-1β production. Taken together, our data suggests that in addition to strong Mincle binding, which is a pre-requisite for Mincle-mediated cellular responses, the physical presentation of trehalose glycolipids in colloidal form is required for inflammasome activation, and hence, a strong inflammatory immune response.

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3