Galectin-3 administration drives remyelination after hypoxic-ischemic induced perinatal white matter injury

Author:

Wang Qian,Diao Sihao,Qiu Han,Gao Ruiwei,Wang Minjie,Chen Qiufan,Xiao Mili,Li Zhihua,Chen Chao

Abstract

Hypoxic-ischemic (HI) induced perinatal white matter injury (PWMI) is a major cause of neurologic disabilities characterized by selective oligodendroglial death and myelin disruption. Galectin-3 (Gal-3) modulates postnatal subventricular zone gliogenesis and attenuates ischemic injury. However, the association between Gal-3 and myelin formation still remains unclear. In this study, we first perform Gal-3 knockdown (KD) to identify the importance of Gal-3 on myelin formation. Our results show impeded myelin formation, manifested by Olig2/CC1 (+) mature oligodendrocytes number, expression of oligodendroglial maturation-associated markers (MBP and CNPase), and myelin thickness and integrity. Then we perform recombinant Gal-3 (rGal-3) administration by intracerebroventricular injection. Notably, although rGal-3 administration shows no beneficial effect on oligodendrogenesis and myelin formation under normal condition, our results show that rGal-3 administration attenuates cognitive deficits and drives remyelination after PWMI, which are coupled to signs of enhanced myelin resiliency and cognition. Also, our results indicates that the significant increases in substrates for remyelination of rGal-3 administration are accompanied by enhanced Iba-1 (microglia marker)/ Mrc1 (M2 marker) (+) microglia and decreased Iba-1/ iNOS (M1 marker) (+) microglia. Altogether, our data in this research confirm the association between Gal-3 and myelin formation, underscore its position for the capacity for remyelination and restoration of function, and unveils the efficacy of rGal-3 administration with anti-inflammatory phenotype microglia (M2 microglia) activation. Thus, the findings suggest that Gal-3 plays a significant role in myelin formation and remyelination restoration.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3