Examination of a foot mounted IMU-based methodology for a running gait assessment

Author:

Young Fraser,Mason Rachel,Wall Conor,Morris Rosie,Stuart Samuel,Godfrey Alan

Abstract

Gait assessment is essential to understand injury prevention mechanisms during running, where high-impact forces can lead to a range of injuries in the lower extremities. Information regarding the running style to increase efficiency and/or selection of the correct running equipment, such as shoe type, can minimize the risk of injury, e.g., matching a runner's gait to a particular set of cushioning technologies found in modern shoes (neutral/support cushioning). Awareness of training or selection of the correct equipment requires an understanding of a runner's biomechanics, such as determining foot orientation when it strikes the ground. Previous work involved a low-cost approach with a foot-mounted inertial measurement unit (IMU) and an associated zero-crossing-based methodology to objectively understand a runner's biomechanics (in any setting) to learn about shoe selection. Here, an investigation of the previously presented ZC-based methodology is presented only to determine general validity for running gait assessment in a range of running abilities from novice (8 km/h) to experienced (16 km/h+). In comparison to Vicon 3D motion tracking data, the presented approach can extract pronation, foot strike location, and ground contact time with good [ICC(2,1) > 0.750] to excellent [ICC(2,1) > 0.900] agreement between 8–12 km/h runs. However, at higher speeds (14 km/h+), the ZC-based approach begins to deteriorate in performance, suggesting that other features and approaches may be more suitable for faster running and sprinting tasks.

Funder

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health,Tourism, Leisure and Hospitality Management,Anthropology,Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3