Infrared thermography and computed tomography imaging for hind limb study after immobilization-induced disuse atrophy

Author:

Martínez-Gutiérrez Berenice,García-Pelagio Karla P.

Abstract

Immobilization for treatment after an injury can lead to disuse atrophy, resulting in reduced functionality and strength of the immobilized limb. In our study, we utilized infrared thermography (IR) and computed tomography (CT) ex vivo to assess both physiological and structural changes following hind limb immobilization in a young Wistar rat model. Twelve rats weighing 275 ± 30 g had their right hind limbs immobilized with a modified Thomas-splint for varying durations (3, 7, or 14 days). IR imaging using an infrared camera provided insight into limb temperature changes. For micro-CT, we implemented a stain-ethanol fixation method and a gray score which enabled us to visualize and quantify muscle alterations. Thermographic images showed an increase in temperature of up to 8% in the hind limb at supine position at 14 days due to the inflammatory process while micro-CT exhibited muscle shrinkage of 10 and 18% at 7 and 14 days, respectively. Our findings underscore the efficacy of IR and micro-CT as rapid and precise imaging modalities for detecting morphological shifts in muscle tissue, particularly in pathological conditions like atrophy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3